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PassBYOP: Bring Your Own Picture for Securing
Graphical Passwords

Andrea Bianchi, Ian Oakley, and Hyoungshick Kim

Abstract—PassBYOP is a new graphical password scheme for
public terminals that replaces the static digital images typically
used in graphical password systems with personalized physical to-
kens, herein in the form of digital pictures displayed on a physical
user-owned device such as a mobile phone. Users present these
images to a system camera and then enter their password as a se-
quence of selections on live video of the token. Highly distinctive
optical features are extracted from these selections and used as the
password. We present three feasibility studies of PassBYOP exam-
ining its reliability, usability, and security against observation. The
reliability study shows that image-feature based passwords are vi-
able and suggests appropriate system thresholds—password items
should contain a minimum of seven features, 40% of which must
geometrically match originals stored on an authentication server
in order to be judged equivalent. The usability study measures task
completion times and error rates, revealing these to be 7.5 s and
9%, broadly comparable with prior graphical password systems
that use static digital images. Finally, the security study highlights
PassBYOP’s resistance to observation attack—three attackers are
unable to compromise a password using shoulder surfing, camera-
based observation, or malware. These results indicate that Pass-
BYOP shows promise for security while maintaining the usability
of current graphical password schemes.

Index Terms—Graphical password, input, live video, observa-
tion, user study.

I. INTRODUCTION

S ECURE access to information underpins modern digital
systems and services. We keep our communications, finan-

cial data, work documents, and personal media safe by providing
identity information and then authenticating to that identity. Text
passwords and personal identification numbers (PINs) are the
dominant authentication method [7] as they are simple and can
be deployed on systems including public terminals, the web, and
mobile devices. However, passwords suffer from limitations in
terms of memorability and security—passwords that are difficult
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to guess are also hard to remember [19]. This is a major problem
as an average user possesses 25 online accounts secured with
up to six different passwords [17] and representing a substantial
memory burden. To deal with this problem, individuals adopt
nonsecure coping strategies such as reuse of passwords across
systems, noting down passwords, or simply forgetting them en-
tirely [1]. In order to mitigate these problems, researchers have
proposed graphical password schemes [5], [6] that rely on input
such as selecting portions of an image. These systems have been
shown to improve memorability without sacrificing input time
or error rates [24] while also maintaining a high resistance to
brute force and guessing attacks [5].

However, graphical passwords present their own problems.
One issue is their susceptibility to intelligent guessing [7], [8],
[32] and shoulder-surfing attacks [31]. Such attacks are effec-
tive because the sections of images that users select as password
items are both easy for an attacker to observe by snooping over
shoulders or setting up a camera to record input and also rel-
atively predictable—users tend to choose hotspots such as the
eyes in a facial portrait [11], [28], [32]. This issue is particu-
larly problematic as the image contents for graphical password
systems are typically stored on authentication servers [5] and
readily presented to attackers in response to input of easily ac-
cessible user identity information [27].

To address this issue, we present a new point-click graphical
password system, PassBYOP—Bring Your Own Picture, that in-
creases resistance to observation attack by coupling the user’s
password to an image or object physically possessed. This is
achieved by using live video of a physical token, such as an
object, a photograph, or even an image of a body part (e.g., a
palm), as the canvas for entering a graphical password. This
physical object replaces easily accessible server-based images
[7], and we argue that attackers will struggle to capture useful
replicas of this content. We present an implementation for the
scheme based on SIFT image features [20] and a demonstration
of its viability through three feasibility studies covering: 1) the
reliability and robustness of PassBYOP feature based input; 2)
participant task performance times and error rates using Pass-
BYOP; and 3) the security of PassBYOP against observation
attack.

II. RELATED WORK

Graphical password systems are knowledge-based authenti-
cation techniques that leverage peoples’ ability to memorize and
recognize visual information more readily than alphanumeric
information [22]. Researchers have explored three broad types
of graphical passwords: recall-based drawmetric schemes based
on sketching shapes on screen, recognition-based cognometric
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schemes based on selecting known items from large sets of op-
tions, and cued-recall locimetric schemes based on selecting
regions of prechosen images [5], [14]. Locimetric schemes are
discussed as is multifactor authentication, as it relates to Pass-
BYOP and its combination of a token, or something you have,
on which a password, or something you know, is entered.

A. Locimetric Password Schemes

Cued-recall (locimetric) password schemes involve users se-
lecting regions on one or more images. Blonder’s [6] U.S. patent
is the earliest example. A seminal example is PassPoints [30].
During login, users are shown a previously selected image, and
they enter a password by clicking on a sequence of locations on
the image. Authentication is successful if the XY coordinates of
these clicks match a previously stored set of password points. A
longitudinal study resulted in login times of 8.78–24.25 s and a
failed authentication rate of 7–13% [30].

While simple and effective, cued-recall graphical passwords
present new security issues. For instance, users typically se-
lect hotspots [28], locations on an image that are highly dis-
tinguishable, memorable, and also predictable to attackers. In
the Microsoft Windows 8 graphical password system, the most
common password involved a photo of a person and triple tap-
ping on the face, where one of the selection points was an eye
[32]. Addressing this issue, the cued-click points (CCP) [9] sys-
tem presented a series of images and allowed users to select
only a single point per image, reducing the need to select com-
mon hotspots. Evaluations of this technique led to authentication
times in the range of 7–8 s and success rates of 90–96%.

A second key problem with locimetric systems is observa-
tion, as password click-points can be acquired by attackers after
viewing a single authentication process [5]. Securing against
observation attack for graphical password systems is critical.
Chiasson et al. [11] remark: “User interface manipulations such
as reducing the text size of the mouse cursor or dimming the
image may offer some protection, but have not been tested.” One
exception is a variant of CCP that uses eye-tracking technology
[16] for input. This system increased resistance to observation
but negatively impacted performance: login times rose to 47.1–
64.3 s and only 67% of participants successful authenticated on
their first attempt. Although more secure, this technique was
prohibitively slow and error prone.

B. Multifactor Authentication Schemes

Multifactor authentication [26], based on the combination
of two or more independent processes, can boost security. In
typical multifactor authentication schemes, physical tokens are
used to generate and store secrets for user authentication. For
example, Aloul et al. [4] used mobile phones as the hardware
token for one-time password generation. Dodson et al. [13]
proposed a challenge-response authentication system involv-
ing a user snapping a picture of a QR code with a mobile de-
vice. The data from this marker generated encrypted data that
were used during login. While these tools offer increased secu-
rity, they are susceptible to particular kinds of attack, such as

Man-in-the-Middle schemes that snoop on, or alter, messages
transmitted between a user and the system [2].

PassBYOP is a multifactor authentication system—both a
physical token and a password are needed to authenticate. Pass-
BYOP differs from prior approaches in three ways. First, it is
more flexible—instead of posing restrictions on the form of to-
kens, any sufficiently complex image or object can be used as
a PassBYOP token. Second, the two authentication factors are
tightly coupled—the password factor is entered on the token
factor. We suggest this close relationship will make the scheme
easy to understand. Finally, the image tokens in PassBYOP are
high-entropy, sufficiently so that they have been previously pro-
posed as a single factor authentication scheme [20]. We also
suggest that these physical data-rich tokens will be resistant
to Man-in-the-Middle schemes as attackers will face substan-
tial barriers in terms of capturing tokens in sufficient detail to
support successful hacks.

III. PASSBYOP OVERVIEW

PassBYOP seeks to make graphical passwords more secure
against intelligent guessing and shoulder-surfing attacks [27],
[30]. We argue these weaknesses stem from the ease with which
both password contents and password canvases can be observed
or, in the case of canvases, directly accessed from a server
[30]. PassBYOP tackles this problem by introducing a physi-
cal token into the authentication process. This way, PassBYOP
transforms a graphical password, which is traditionally a single-
factor authentication mechanism, to a more secure multifactor
authentication method. We argue that this makes PassBYOP
Resilient-to-Internal-Observation [7], meaning that an attacker
cannot impersonate a user simply by intercepting input on the
authentication device or by eavesdropping on the communica-
tion between the authentication device and verification system.

PassBYOP authentication takes place as follows (see Fig. 1).
Assuming users have previously created a password, login in-
volves users identifying themselves at a PassBYOP terminal in a
manner fitting the system and use context. For example, systems
such as office door locks may assume all users are valid, while a
user ID might be used on a public computer, and higher security
applications, such as a bank ATM, will likely rely on a physi-
cal token such as an ATM card. PassBYOP could be integrated
into any of these scenarios. Second, users place a prechosen
password image or object they possess on top of a camera unit
in the terminal. This is captured and displayed live on an adja-
cent touch screen. Third, they tap on the image locations that
correspond to their password. This way, authentication requires
both the physical token and the password simultaneously. We
argue this raises the resistance of PassBYOP to attacks based on
password observation and guessing as attackers need to possess
a user’s genuine token or a high fidelity copy.

IV. IMPLEMENTATION

The PassBYOP prototype consists of a 13.5-cm-wide ×
22.5-cm-long× 12-cm-high plastic box with a transparent cover
and containing an upward-facing Logitech QuickCam E3500
webcam with a resolution of 640×480 pixels and a speed of 30
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Fig. 1. Sequence diagram showing the steps involved in creating a PassBYOP
password for the first time (1. Password Creation) and when attempting to login
(2. Login).

Fig. 2. (1) Overview of the PassBYOP system. (2) Input selection and closeup
(2b). (3) Input selections that make up a password. (4) Successful authentication
and (5) denied authentication.

frames/s. The webcam is connected to a PC running PassBYOP.
The PassBYOP interface and video feed are shown on an Apple
iPad that is connected wirelessly to the PC via a screen-sharing
application [see (1) in Fig. 2] and fixed to the surface of a desk.
The video resolution on the iPad is 450×600 pixels or approx-
imately 8.5 cm × 14 cm. All input to the system is made on
the iPad touchscreen. Specifically, as illustrated in (2) in Fig. 2,
users make selections by tapping the screen to visually highlight
70 × 70 pixel (approximately 1.5 cm2) portions of the displayed
image, drag to move this region and release to select it. Once
an image portion is selected, it is stored as a password item and
displayed as feedback to the user at the base of the screen [see

Fig. 3. PassBYOP process from image selection through feature extraction to
image matching and production of a match score.

(3) in Fig. 2]. Users must input a total of four items and then
press an OK button in order to enter a complete password. They
can also press a reset button to clear the entered password items
at any time.

In existing graphical password systems [30], the passwords
are represented as the XY image coordinates of finger selections.
This technique does not work with PassBYOP as variations in
image placement on the terminal camera will lead to substantial
variations in the XY pixel positions of image content. Instead,
PassBYOP selections are stored on the authentication server as a
set of optical features computed with the SIFT image processing
algorithm [20]. This was achieved by capturing a 140 × 140
image subsection around the center point of each password item
(see Fig. 3). A Gaussian blur was then applied and Lowe’s [20]
SIFT algorithm was computed with the peak threshold set to
2 and the edge threshold set to 10. This yields a list of image
features and descriptors. Those that fell outside the central 70 ×
70 selection box were discarded and the remainder used for
password matching [see Fig. 3(d)].

The matching process involved minimizing the Euclidean
distance between the sets of feature points in the original and
entered password items (see Fig. 4). Subsequently, a thresh-
old on the percentage of matching features was used to de-
termine whether the entered password matched the original.
Lower threshold levels result in a lenient password system,
whereas higher levels are stricter. This process hinges on the
fact that SIFT features are highly distinctive, robust to noise,
accurate, and rotation invariant—capable of matching the fea-
tures extracted from a single image against a database containing
100 000 images with an overall accuracy of 80% [20].

V. EVALUATION

A. Reliability Study

This study assessed the reliability of PassBYOP in order to
determine suitable thresholds for the equality of two password
items in terms of the minimum number of image features they
should possess and the percentage of image features that should
match. As variations in token placement are inevitable with Pass-
BYOP’s camera-based setup, we also explored the robustness
of the system with rotated input images. Finally, we assessed
the uniqueness of feature-based password items.

1) Materials: Five source images were selected based on
the image categories with highest success rate in prior work
[8]. They depicted cars, a mural, toys, a statue, and a human
face. These images were displayed on a Samsung Galaxy S-II
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Fig. 4. Feature heatmap generated by testing the match between a selected area its transformations (rotation or translation) with the same image or a downgraded
copy. Light colored zones in the heatmap indicate a match (white is 100% match). (a) Translated (b) Rotated (c) Translated.

Fig. 5. (a) One of the five images used in the feasibility study. Colored lines
showing the required and current angular orientation. (c) Image after the token
has been rotated to match the required orientation.

mobile phone with a screen resolution of 480 × 800 pixels and
each image was preprocessed to match this screen resolution.
We placed a 110-pixel square NyARToolkit fiducial marker [23]
in the center of each image to enable accurate detection of its
angle relative to the PassBYOP camera.

Four selection points were also marked on the image with
a 110-pixel circle and labeled with numbers from 1 to 4. The
selection points were chosen in a pilot study where eight users
(two females, aged between 20 and 25 years) choose four pass-
words items on the selected images and entered them into the
PassBYOP system five times. We chose prominent distinctive
points from among the selections in these sessions—either those
that were frequently chosen or, if there was substantial variation
in the points selected by users, one of the items at random. An
example of one of final images used in the study can be seen
in Fig. 5. The experimental task involved users selecting these
marked points in order. The use of predetermined and clearly
marked selection points ensured the results were not influenced
by issues such as memorability.

2) Participants: We recruited 15 volunteers (four females,
two left-handed) from Sungkyunkwan University. They were a
mix of students and staff, aged between 20 and 29 years (Mean:
24, SD: 2.83). None were security experts or knowledgeable in
the area of security research.

3) Procedure: For each of the five preselected images, each
user completed a block of 11 input trials composed of selecting
the four marked points in ascending numerical order. Each user
experienced the five images in a random order, and the first trial
with each image was used as a reference for matching input in
the subsequent ten trials. During each trial, the user also had
to rotate the image to a specific angle prior to making input.
For the first trial, this rotation angle always corresponded to
aligning the long axis of the phone with the camera, but for all
other trials, the required angle randomly varied from this vector

Fig. 6. Matching score break down for angles in the feasibility study. The
mean value across all angles is 44.3%.

by up to 90◦, in 10◦ increments, in both rotational directions.
The required angle was shown on screen by a short yellow
line, and the angular position of the image was tracked using
the AR marker and displayed as a red line. Before they were
able to make selections, participants needed align these two
lines. Selections made on nonaligned images were discarded
and participants presented with a mild warning—an error beep.
In case of inadvertent errors, participants were also able to press
an on-screen reset button and start a new trial at any time.
In total, this study captured 3000 valid selection events—15
participants× 5 images× 10 trials× 4 selection items. For each
selection, we logged time, the number of features extracted, and
the matching score.

4) Results: The mean completion time was 15.5 s (SD: 1.2),
the average number of features extracted was 7.6 (SD: 2.7), and
the average matching score was 44.3% (SD: 11.4). Fig. 6 shows
the mean matching score for each angle studied. We exam-
ined the independent variables of image (five levels) and angle
(nineteen levels) separately using one-way repeated measures
ANOVA and MANOVA tests. This is because of the sparsity
of the data collected—although the design was repeated mea-
sures, the large number of angles considered meant that not
every participant completed a trial with every possible combi-
nation of image and angle, thus precluding the use of two-way
tests. For each variable, we conducted an ANOVA on the time
data and a MANOVA on the closely related measures of num-
ber of features and match score. In all cases, Mauchley’s test
assessed sphericity, and, if violated, Greenhouse-Geisser cor-
rections were employed. Effect sizes are reported in the form
of partial eta squared (η2

p ). Due to the exploratory nature of this
investigation, and the large number of posthoc tests implied by
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the 19 levels of the angle variable, we opted not to conduct a
follow-up pairwise analysis for either variable.

In terms of task completion time, the image variable re-
sulted in significant differences with a very limited effect
size (F (3.72,554) = 6.219, p < 0.001, η2

p = 0.04). Pillai’s
trace indicated that the image also exerted an effect on both
number of features found and match score (V = 0.973,
F(8,142) = 651.75, p < 0.001, η2

p = 0.973). Follow-up univariate
ANOVAs showed greater effect sizes: number of features found
(F (3.218,479.5) = 344.3, p < 0.001, η2

p = 0.698) and match score
(F (3.719,554.1) = 219.7, p < 0.001, η2

p = 0.596). The 19 different
angles did not lead to significant variations in task completion
time, but Pillai’s trace indicated an effect on both number of
features found and match score (V = 0.407, F(36,864) = 6.132,
p < 0.001, η2

p = 0.204). Follow-up univariate ANOVA showed
significant variations in terms of both the number of features
(F (4.564,109.5) = 4.217, p = 0.002, η2

p = 0.149) and match
score (F (8.289,198.94) = 9.147, p < 0.001, η2

p = 0.276).
We note that times were high because participants had to

perform two substantial tasks—align the image on the Pass-
BYOP camera system and, then, select four targets. As the
alignment angle and selection targets were marked in the same
way throughout the study, it is not surprising that task time re-
mains relatively stable—a significant effect was observed, but
the effect size is very small. The substantial variations in the
number of features and match score according to the image
variable highlight the importance of the choice of source image
in the PassBYOP system—some of the images used in the study
were more feature rich, resulting in a more distinctive canvas on
which to enter a password.

Finally, changes in the number of features and match score
with the different image angles appear to clash with the notion
that SIFT features are rotation invariant [20]. However, we be-
lieve these differences can be explained by the introduction of
noise due to the use of a relatively low-resolution camera cap-
turing a much higher resolution on-screen image. Furthermore,
PassBYOP culls features outside a 70 × 70 pixel selection area.
Consequently, with a rotated image, features situated in the cor-
ners may be lost, decreasing the overall matching score. This
assertion is supported by visual inspection of the charts of the
match scores—the lowest levels occur in and around 45◦ of
rotation from the original image alignment (see Fig. 6). The
rotation variations studied here represent extreme changes of
up to 90◦. Any realistic system implementation may constrain
users to placing images in relatively consistent orientations.

To assess whether selections outside the target area would
be erroneously matched using these threshold values, we cre-
ated feature heatmaps—monochrome gradient maps where lu-
minosity at a given location is determined by its percentage
match (calculated using the SIFT algorithm) to a target area.
To build these, we exhaustively executed the PassBYOP match-
ing process for each pixel at the center of a 10 × 10 grid for
each of the five images and four selection points used in the
feasibility study. A blob detection algorithm was used to extract
the number and size of matching regions. A total of 20 blobs
were found (a one-to-one correspondence with selection points)
with a mean size of 35.2 pixels (SD 11.2). Visual inspection

Fig. 7. Example of heatmaps extracted from one of the images used in the
feasibility study.

revealed no overlaps between detected blobs—this indicates that
no selections outside of the 70 × 70 selection region used in
the system would lead to false positives. This evidence, in com-
bination with the threshold results above, supports the viability
and sensitivity of the overall PassBYOP approach—that SIFT
feature sets are sufficiently persistent, distinctive, and unique
to serve as password items. An example heatmap is shown in
Fig. 7.

B. Usability Evaluation

The second study in this paper explores user performance with
PassBYOP in terms of entry times and error rates for comparison
with prior graphical password system schemes. Users in this
study authenticated in two conditions: a private image of their
choice and a system-provided public image.

1) Participants: Twenty participants completed this study—
six females, one left-handed and aged between 19 and 33
years (mean 23, SD: 3.8). They were students, researchers, and
professionals, recruited using fliers posted in Sungkyunkwan
University, emails to message boards, and word of mouth. Each
participant was compensated with US$10. Participants regarded
themselves as novice computer users (eight), medium users
(ten), and advanced users (two). No participant was an expert
in security. Participants were screened to ensure all owned a
smartphone and stored personal images in its memory.

2) Materials: The public image depicted a parking lot pop-
ulated with cars, similar to [8]. To acquire images for the private
image condition, users were asked to select a personal authenti-
cation image in advance. They were given specific requirements:
the image should be of high resolution, low granularity, and not
to include large monochrome regions such as white walls. Im-
ages chosen by the participants included pictures of food (6),
people (6), places (4), toys and small objects (3), and text (1).
All selected images met system requirements in terms of visual
richness of the contents.

3) Procedure and Measures: All participants completed
both public and private image conditions in a fully balanced
design—half of the participants experienced the private image
condition followed by the public condition and the other half
vice versa. All sessions took place in a quiet room using the
PassBYOP terminal and a Samsung Galaxy S-II phone. Pass-
BYOP was configured with a threshold of 40% and a minimum
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number of seven features for each password item. Participants
were first given an introduction to the system and its operation.
They then completed a demographics form followed by the two
experimental conditions.

The two conditions followed an identical structure. Each con-
dition started with the creation phase in which the user placed
the Galaxy S-II phone on the PassBYOP terminal and set a
four-item password by selecting points on the displayed image.
If any selection contained less than seven features, users were
prompted to make another selection. At any point, a partici-
pant could press a reset button to clear the current selection and
restart with no penalty. After the four items were entered, the
participant re-entered the password. If he or she was unable to
successfully do so, the system followed the typical conventions
for bank passwords and required users to start afresh and cre-
ate a new password. After participants successfully created a
password, they moved on to the login phase where they authen-
ticated two more times and then completed a visual distractor
task at another computer. This task took the form of an on-
line image-tagging game named ARTigo [3], in which users are
presented with a sequence of five art images (each for 1 min)
and need enter words to describe the contents. As with prior
work on graphical passwords [8], the rationale for including
the distractor task was to remove the graphical password from
participants’ working memory. After completing this distractor,
participants authenticated one more time.

Performance measures used during the login phase of the
study included: the mean time taken to enter the full set of four
password items during successful authentication trials, the num-
ber of repeated trials required to setup the original password,
the number of errors and resets that occurred during the study,
and the number of features and matching score for each entered
password item. Finally, at the end of both conditions, users
completed a NASA TLX questionnaire [18] and answered two
questions on ten-point Likert scales: “How easy was it to create a
password on this image?” and ”How difficult will it be to remem-
ber your password in one week?” We also conducted a poststudy
interview in which we asked to participants about the usabil-
ity of PassBYOP. The experiment took approximately 30 min
per participant, and we captured data for a total of 80 correct
authentication trials or 320 individual password item entries.

4) Results: In this analysis, significance levels were deter-
mined using α = 0.05. Objective results from the login phase are
shown in Table I. These data were first tested for normality us-
ing the Shapiro–Wilk test; error data were highly nonnormal and
a subsequent Wilcoxon signed rank test showed no significant
variation between conditions. Every participant successfully au-
thenticated within three trials. With the public image, a single
user contributed 42% of errors, while two users were responsi-
ble for 50% of errors in the private image condition. A paired
t-test on the time data between public and private conditions also
showed no significant differences. Finally, a repeated-measure
MANOVA using Pillai’s trace showed a significant impact of
the public/private condition on the related variables of num-
ber of features and match score (V = 0.6.54, F(2,18) = 4.759,
p = 0.022, η2

p = 0.346). Subsequent univariate ANOVAs showed
significant differences in both match score (F(1,19) = 4.851,

TABLE I
RESULTS OF THE USABILITY STUDY

System image User image

Median creation time (s) 8.2 (5.7) 8.5 (2.9)
Median login time (s) 7.3 (2.8) 7.5 (2.1)
Password creation success rate 100% 100%
Successful login within 3 trials 100% 100%
Successful login at first trial 100% 85%
Successful login at second trial – 100%
Total resets 6 / 87 7 / 90
Mean error items (in failed login) 1.7 / 4 2.1 / 4
Mean match score (successful) 72.9% (6.7) 77.1% (5.5)
Mean match score (fail) 27% (22.8) 13% (15.4)
Mean features (successful) 11 (2.2) 14.7 (4.5)

Fig. 8. TLX data showing workload in the usability study.

p = 0.04, η2
p = 0.203) and number of features (F(1,19) = 8.353,

p = 0.009, η2
p = 0.305). Although there are modest variations in

these latter measures, the number of features and match scores in
both conditions exceed the thresholds of seven and 40% estab-
lished in the system feasibility study. Participants were capable
of selecting and entering passwords with both the image selected
by the experimenters and their own images.

The TLX workload data are shown in Fig. 8. These show a
general trend for reduced workload in the private image con-
dition, an observation borne out by a significant difference in
the summed measure of Overall Workload (t (19) = 2.835,
p = 0.011, d = 0.51). To protect against alpha inflation, we do
not report results for the component workload measures. Par-
ticipants also rated ease of creating passwords with the private
and public images at 8.3 (SD 5.8) and 6.95 (SD 2.68) and mem-
orability of the private and public images at 5.8 (SD 2.19) and
4.85 (2.52), respectively. These related measures were analyzed
using repeated-measure MANOVA. Pillai’s trace showed a sig-
nificant effect of public/private images on ease of creation and
memorability (V = 0.369, F(2,18) = 5.263, p = 0.016, η2

p =
0.369). However, follow-up univariate ANOVAs revealed a sig-
nificant difference only in terms of ease of password creation
(F(2.488,18.225) = 7.325, p = 0.014, η2

p = 0.278). In general,
these subjective data favor the private image condition over the
public image condition. However, we recommend caution in-
terpreting these effects, as they necessarily involve a number
of independent tests. While opinions differ on how to handle
such multiple comparisons [15], we note a lack of significance
differences if corrective procedures, such as using a more con-
servative threshold of α = 0.01, are applied.
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In the posthoc interview, participants explained these ratings
by remarking that the parking lot image contains too many
similar cars, making selecting password locations challenging.
Several also noted that although they felt it was easier to choose
memorable locations from their private images, they still some-
times confused selection points with visually similar locations in
their images. Finally, participants acknowledged that the choice
of their private image was important and that their perceptions
of the security and usability of the system partially reflected
these choices.

C. Security Analysis

This section provides a security analysis of the PassBYOP
system. We developed a threat model for PassBYOP that is
based on vectors including token theft, guessing (both educated
and brute-force), and observation (via shoulder-surfing, camera
attacks, and via malware that takes over the PassBYOP cam-
era). We analyze theft and guessing attacks conceptually and
describe a study to assess resilience to the three different forms
of observation.

1) Theft: While PassBYOP cannot prevent theft, its close
coupling of a token to a password does provide benefits.
Unlike many types of authentication token (e.g., door entry
cards), physical possession is insufficient to crack the system—
attackers must also gain access to the password. This way,
PassBYOP offers advantages over purely token-based systems,
including those based on secure device pairing over visual chan-
nels [21], [25]. There are also three further advantages conferred
by using a token displayed on a mobile device. First, attackers
must unlock the mobile device to access the token, potentially
facing an additional and unrelated security scheme. Second, they
must identify the precise token image, a potentially challenging
process. Third, users could conceivably use software to remotely
wipe a token from a stolen device. This paper argues that the
relative ease with which users would be able to restrict access to
obscure or remove their PassBYOP password images provides
a measure of resistance to attacks based on token theft over and
above that present in more traditional token-based schemes.

2) Educated Guessing or Brute Force Attacks: From a se-
curity perspective, typical cued-recall graphical passwords have
practical password spaces comparable in cardinality to four- or
five-digit PINs [5]. Data from the feasibility study suggest that
PassBYOP has a similarly sized password space—with a match-
ing threshold of 40%, the heatmap analysis indicates that each
PassBYOP selection has a viable radius of 35 pixels (0.75 cm),
leading to a valid selection area of 0.56 cm2 , a figure very close
to that used in benchmark systems such as the 0.53cm2 used in
PassPoints [30]. Thus, given a total selection space of 450 ×
500 pixels, the total number of discriminable selection points
for each user input is approximately ∼220. Over a four-item
PIN, according to the calculations used by Wiedenbeck et al.
[30], this leads to a total Hartley entropy (or available password
space) of ∼ log2(220.44), a figure greatly exceeding that of a
four-digit numerical PIN [5].

We acknowledge that these entropy figures are optimistically
high and represent a theoretical maximum—in reality, only a
subset of the possible hotspots are actually likely to be selected

[28], [29]. However, this entropy calculation appears in closely
related work [30], and using this common formulation makes
PassBYOP comparable with prior work. We also note that
in contrast with other graphical password schemes, PassBY-
OPs use of a token makes guessing attacks insufficient if used
alone—they must be combined with theft or observation in or-
der to also acquire either the users token or a high fidelity copy.
We argue that this increases the security of PassBYOP relative
to prior approaches.

3) Observation: Cued-recall graphical passwords are vul-
nerable to observation attacks. A single observation can be
enough to disclose a password to a bystander [11], [30]. Re-
flecting the importance of this vector, an observation attack was
staged on the PassBYOP system to empirically assess the sys-
tem’s resistance to this type of threat. Three types of observation
were considered: shoulder-surfing, a camera attack, and an at-
tack based on malware that takes over the PassBYOP terminal
and records the image displayed on the screen and the coordi-
nates of the input points selected by the user. This last attack
represents a worse-case scenario—a substantial and comprehen-
sive man-in-the-middle attack akin to using the system camera
to skim not only the password items entered, but also a copy of
the image they are entered on. We conducted an empirical study
to explore the resistance of PassBYOP to these vectors using
the system configuration studied in the system feasibility study:
passwords composed of four items, each with a minimum of
seven features and matches recorded above a threshold of 40%.

4) Security Study: A member of our research group posed as
a knowledgeable security conscious victim and repeatedly en-
tered two PassBYOP passwords in two different attack scenar-
ios. The first involved the use of a public system assigned image
depicting a parking lot, as in [8], while the second involved the
use of a private personally selected image, in this case a bowl of
Japanese ramen. We argue that the public scenario mimics the
case of conventional cued-recall graphical passwords, where the
images used for authentication are stored on a server and dis-
closed at login time. On the other hand, the private scenario ex-
plores whether there is additional security value in PassBYOP’s
support for personally selected and maintained user-owned im-
ages.

a) Participants: Three participants (attackers) completed
this study, a typical size of participant pool for this kind
of experiment [12]. They were all graduate students from
Sungkyunkwan University majoring in computer security. None
was otherwise involved with this research, and each attacked
PassBYOP in both public and private scenarios.

b) Procedure: The order of the scenarios was randomly
assigned to each participant, and there was a 30-min break be-
tween attempts to crack each scenario. While attempting to
crack each scenario, participants performed a series of three
increasingly sophisticated attacks: 1) shoulder-surfing followed
by 2) camera attack followed by 3) malware combined with
camera attack. For each attack type, participants were requested
to spend at least 10 min attempting to authenticate and were
allowed three attempts to enter the correct password. If at any
point the password was cracked, the attacker was not required to
continue cracking the same scenario. If all three attempts failed,
they moved on to the next attack. As an incentive, attackers who
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succeeded to crack the password with shoulder-surfing were
compensated with US$10, those who succeeded with camera
attack received US$8, and US$5 was provided for success with
the malware attack. Lunch was offered to all the attackers.

During the shoulder-surfing stage, attackers stood near the
victim (within 1.5 m) during three successful logins. Note taking
was encouraged. In this camera stage, attackers were provided
with an HD video recording showing a closeup of the entire
login process, including password item entry and a clear capture
of the mobile device showing the image token. The video was
shot without visual obstructions from less than 1 m away from
the user with an HDR-HC3 HDV 1080i Sony camcorder. In
the malware stage, attackers were provided with an additional
video recording of the login phase from the point of view of
the PassBYOP system camera. Attackers were able to use any
tools or resources they wished during the attacks. In the public
image condition, they were automatically presented with the
authentication image, while in the private condition, they were
able to use Internet searches and any image processing tools
they wished to find, treat, create, or modify the source image
and selection points observed and captured during the attack. In
total, each participant spent approximately 3 h to complete the
experiment.

c) Measures: We recorded the number of passwords
cracked, the relative percentage matching scores, and the mean
number of matching features: These last two measures indicate
how well the attackers were able to reproduce the user’s input
images and selections—the higher the numbers, the stronger the
attacks. We also distributed a questionnaire for the attackers to
indicate on a ten-item Likert scale how difficult they felt the
attack was and how well they self-evaluated their performance.
Finally, in a poststudy interview, we asked them to describe their
process.

d) Results: Table II shows the results of the attacks for
authentications with both public and private images. A single
observation was enough for all three attackers to crack the public
image password [11]. In fact, they were able to do so quickly
and confidently—in less than 10 s and with a matching score
of 65%, substantially over the system threshold of 40%. In the
self-reported questionnaire, the attack was declared to be easy
(2.3 SD:2.3) and the attackers’ performance to be good (8.3
SD:2.8). They reported that they entered the password after the
shoulder surfing observation. One attacker indicated he or she
had taken notes.

With private images, the shoulder-surfing attack was com-
pletely unsuccessful. Although attackers spent between 10 and
30 min trying to find a similar image using the Internet (one at-
tacker searched on the victim’s personal homepage), they were
unable to authenticate within the given trials, and none of the
features could be matched. Attackers reported the task to be
difficult (10, SD:0) and their performance to be low (3.6, SD:
4.6). We attribute this low performance to the fact that the SIFT
algorithm is capable of detecting and recognizing the features of
a single image from a dataset of 100 000 keypoints [20] with an
accuracy of 80%. As such, even if an attacker synthetically con-
structs an image where each pixel is computationally generated
with a random color, the chance that any of the features required
per selection will match the features of the stored password

image will be 20% or lower. Based on this evidence, we argue
that even with the more liberal matching threshold of 40% used
in PassBYOP, the chances of a randomly generated image lead-
ing to a matching feature set is very low—certainly much lower
than the one in ten chance of guessing a single numeric PIN item.

The camera attack was also unsuccessful, but two attackers
were able to compromise a single password item. This attack
took longer (15–45 minutes) because attackers extracted frames
from the HD footage when the phone was facing the camera
and used image editing tools such as Adobe Photoshop to
recompose the source image used in the authentication. The
attack was reported to be moderately difficult (7, SD:1) and
performance to be relatively low (4, SD:2.6). One attacker
explained that the difficulty was to create an image to match
the original observed image. Although the footage was clear,
it was challenging to reproduce an identical replica, as even
small variations of size, viewing angle, or illumination led to
substantially different image features.

Finally, the malware and camera attack was the most
effective—it represents a worst-case scenario. Two attackers
were able to compromise two of the password items—half the
full password. This attack took approximately the same time
as the camera attack and was not reported to be easier (7.6
SD:0.5) although it resulted in modest improvements to self-
reports of performance (5.3 SD:0.5). Attackers indicated they
followed an image recomposition process broadly similar to
that used with the camera attack, but they encountered two
unexpected difficulties. First, the low resolution of the system
camera (640 × 480) led to downsampled image captures that
could not be directly used to authenticate—features derived
from low-resolution copies differ from those extracted from
high-resolution originals displayed on the phone. Second, mi-
nor movements of the phone to bring the selection points into
the field of view of the camera meant that attackers were not
able to rely on a single frame showing the entire image and
were forced to edit together multiple frames to produce their
final image—a laborious task.

These results compare well with prior cued-recall password
systems [8], [30], [31] that exhibit little to no resistance against
shoulder-surfing. Attacks on PassBYOP took substantial time
and effort and yielded a low success rate—although several
items were successfully entered, no attacker managed to crack a
full PassBYOP password. This result demonstrates the increased
security of the PassBYOP approach against observation. It is
particularly compelling as, although the attackers were partially
able to crack the password, the threat model used in the malware
attack was extremely generous in the type and nature of the infor-
mation provided. This suggests PassBYOP would exhibit a very
high resistance to observation if deployed in a real-world setting.

VI. DISCUSSION

We presented three empirical examinations of the PassBYOP
system. In the first, we established the feasibility of using image
features as password items in terms of their uniqueness and
the reliability with which they can be entered. In the second,
we established basic user performance data while operating
PassBYOP: Login took a median of 7.5 s, and although error
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TABLE II
RESULTS FOR THE OBSERVATION ATTACK USING PUBLIC AND PRIVATE IMAGES SHOWING 1) NUMBER OF ITEMS CRACKED, 2) THE PERCENTAGE MEAN MATCH

SCORE ATTAINED, AND 3) THE MEAN NUMBER OF MATCHING FEATURES

Shoulder surfing Camera Malware & Camera

Items Mean Items Mean Items Mean
cracked score Features cracked score Features cracked score Features

Attacker1 4/4 62.75% 6.25 – – – – – –
Attacker2 4/4 63% 6.25 – – – – – –
Attacker3 4/4 63.25% 6.75 – – – – – –
Average 4/4 63%(0.2) 6.4(0.3) – – – – – –

Shoulder surfing Camera Malware & Camera

Items Mean Mean Items Mean Mean Items Mean Mean
cracked score Features cracked score Features cracked score Features

Attacker1 0/4 0% 0 1/4 12.25% 1.12 0/4 8% 0.5
Attacker2 0/4 0% 0 1/4 28.58% 3.41 2/4 22.12% 2.25
Attacker3 0/4 0% 0 0/4 17.87% 1.62 2/4 41.5% 4.12
Average 0/4 0% 0 0.7(0.6) 19.6%(8.3) 2.1(1.2) 1.3(1.1) 23.9%(16.8) 2.29(1.81)

data was unevenly distributed, mean rates were 9%. Finally,
in the third study, we examined security and established that
the use of an external token image increases the resistance to
observation attack without compromising security against other
vectors such as intelligent guessing or brute force. These results
compare well with seminal prior work such as Passpoints [30],
which yielded mean login times of 8.78–24.25 s and 1.55–2.75
failed authentication attempts prior to successfully entering a
password. Similarly, Chiasson et al. [8] present a lab study of
click-point-based graphical passwords using multiple images
and report a median login time of 7 s and an error rate of 6%.

Based on these data, we argue that the use of feature extrac-
tion from captured images as the mechanism for storing and
matching password items does not fundamentally change the
ease with which cued-recall graphical passwords can be used.
This is a highly positive conclusion as the underlying com-
plexity of the recognition and comparison system in PassBYOP
is substantial—to achieve equivalent results to prior graphical
password systems is a strong endorsement of the technical via-
bility of the approach. This result also shows that the increased
resistance to observation achieved by PassBYOP does not place
additional burdens on users—speed and accuracy are broadly
comparable with prior systems.

Worth contextualizing is the conclusion in the light of prior
work that aims to compare graphical passwords against observa-
tion attacks. For example, Forget et al. [16] present observation
resistant graphical passwords that are entered by tracking eye
movements. Login times are between 36.6 and 53.5 s, depending
on the tolerance levels used in the system. Similarly, participants
were only able to enter a password correctly in three attempts
in 79–93% of cases. This example highlights how challenging
it is to design observation resistant systems. The substantially
lower task entry times, and greater accuracy of password entry
with PassBYOP suggests that it is a more realistic approach to
increasing the observation resistance of graphical passwords. It
allows users to enter information in a comfortable and traditional
way, while still introducing a hard-to-observe component—the
PassBYOP tokens. Furthermore, the fact that these tokens are

self-selected, rather than issued by a central certified authority,
such as a bank, may also confer additional advantages. Specifi-
cally, in the usability study, participants experienced lower lev-
els of self-reported workload and stated they preferred their own
images to a standard system provided alternative.

There are a number of limitations to this study. In terms of the
system, we used SIFT, a single feature extraction technique, and
a more extensive investigation of alternative techniques (such
as SURF) may reveal a more efficient or otherwise optimal
candidate. Similarly, the feature matching algorithm we used
was based on the comparison of Euclidean distance between
features, as in [20]. Exploring more advanced similarity met-
rics could improve system performance. Furthermore, we did
not perform any formal evaluation to determine the feasibility
of PassBYOP across different devices and in different envi-
ronmental conditions. Although we have informally tested the
system with a range of mobile devices and token types and in
different lighting conditions, formal study of these variables is
an important next step toward demonstrating the robustness and
viability of the approach. PassBYOP also used a low-resolution
camera, which increased robustness against tamper-based ob-
servation attacks, but may have made it harder to recognize
genuinely correct tokens and features. In the future, PassBYOP
performance should be tested with a variety of cameras. Finally,
the current PassBYOP system achieved multitouch input capa-
bility by wirelessly streaming video from the PassBYOP host
computer to an iPad tablet. While this approach was simple and
effective, greater speed and efficiency would be attained with a
native application.

In summary, this paper proposed improving the security of
graphical password systems by integrating live video of a phys-
ical token that a user carries with them. It first demonstrates
the feasibility of the concept by building and testing a fully
functional prototype. It then illustrates that user performance is
equivalent to that attained in standard graphical password sys-
tems through a usability study assessing task time, error rate,
and subjective workload. Finally, a security study shows that
PassBYOP substantially increases resistance to shoulder-surfing
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attacks compared with existing graphical password schemes
[5], [16], [30]. Ultimately, we argue this paper demonstrates
that PassBYOP conserves the beneficial properties of graphical
passwords while increasing their security.
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